A Study on the Dose Distributions in Various Materials from an Ir-192 HDR Brachytherapy Source
نویسندگان
چکیده
Dose distributions of (192)Ir HDR brachytherapy in phantoms simulating water, bone, lung tissue, water-lung and bone-lung interfaces using the Monte Carlo codes EGS4, FLUKA and MCNP4C are reported. Experiments were designed to gather point dose measurements to verify the Monte Carlo results using Gafchromic film, radiophotoluminescent glass dosimeter, solid water, bone, and lung phantom. The results for radial dose functions and anisotropy functions in solid water phantom were consistent with previously reported data (Williamson and Li). The radial dose functions in bone were affected more by depth than those in water. Dose differences between homogeneous solid water phantoms and solid water-lung interfaces ranged from 0.6% to 14.4%. The range between homogeneous bone phantoms and bone-lung interfaces was 4.1% to 15.7%. These results support the understanding in dose distribution differences in water, bone, lung, and their interfaces. Our conclusion is that clinical parameters did not provide dose calculation accuracy for different materials, thus suggesting that dose calculation of HDR treatment planning systems should take into account material density to improve overall treatment quality.
منابع مشابه
Evaluation of BEBIG HDR 60Co system for non-invasive image-guided breast brachytherapy
PURPOSE HDR (60)Co system has recently been developed and utilized for brachytherapy in many countries outside of the U.S. as an alternative to (192)Ir. In addition, the AccuBoost(®) technique has been demonstrated to be a successful non-invasive image-guided breast brachytherapy treatment option. The goal of this project is to evaluate the possibility of utilizing the BEBIG HDR (60)Co system f...
متن کاملMonte Carlo investigation on precise dosimetry of HDR breast brachytherapy with Accuboost
Introduction: Accuboost is a HDR brachytherapy system in early stages breast cancer treatment. This device provides a completely noninvasive procedure with parallel-opposed radiation from two immobilizing peripheral applicators that caused it a preferred option of modalities to choose. In most commercial treatment planning systems, tissues are considered as a simple water phan...
متن کاملApplicator Attenuation Effect on Dose Calculations of Esophageal High-Dose Rate Brachytherapy Using EDR2 Film
Introduction Interaluminal brachytherapy is one of the important methods of esophageal cancer treatment. The effect of applicator attenuation is not considered in dose calculation method released by AAPM-TG43. In this study, the effect of High-Dose Rate (HDR) brachytherapy esophageal applicator on dose distribution was surveyed in HDR brachytherapy. Materials and Methods A cylindrical PMMA phan...
متن کاملComparison of Depth Dose Distributions Using Cerenkov Fiber-Optic Dosimeter and Monte Carlo Simulation for HDR Brachytherapy
In this study, we fabricated a Cerenkov fiber-optic dosimeter (CFOD) without any scintillator to measure Cerenkov radiation signals owing to gamma-rays. The relative depth dose (RDD) distributions of Ir-192 HDR brachytherapy source were obtained by using the CFOD based on a subtraction method and the RDD curve was compared with the simulation result of Monte Carlo N-particle extended transport ...
متن کاملEvaluation of dose distribution and dose gradient in brachytherapy cylindrical applicators using a dedicated Phantom for Iridium-192 and Cobalt-60 HDR sources
Introduction: A study was performed to evaluate radiation dose distribution and dose gradient around cylindrical applicators for high-dose-rate (HDR) brachytherapy systems with 192Ir, 60Co brachytherapy source applied for rectal and vaginal cancers treatments. Materials and Methods: Two additional computed tomography (CT) based plans were generated using a ...
متن کامل